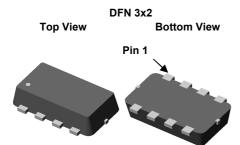


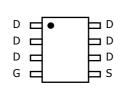
General Description

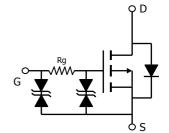
The AON4407 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch.

Features

 $V_{DS}(V) = -12V$


 $I_D = -9$ A $(V_{GS} = -4.5V)$


 $R_{DS(ON)}$ < 20m Ω (V_{GS} = -4.5V)


 $R_{DS(ON)} < 25m\Omega \ (V_{GS} = -2.5V)$

 $R_{DS(ON)}$ < 31m Ω (V_{GS} = -1.8V)

ESD Protected

Absolute Maximum Ratings T_A=25°C unless otherwise noted **Parameter** Symbol Units Maximum Drain-Source Voltage V_{DS} -12 V_{GS} Gate-Source Voltage ±8 -9 $T_A=25^{\circ}C$ Continuous Drain T_Δ=70°C -7 Current I_D Α Pulsed Drain Current -60 I_{DM} 2.5 T_A=25°C Power Dissipation ^B P_D W T_^=70°C 1.6 °C -55 to 150 Junction and Storage Temperature Range T_J , T_{STG}

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	D	42	50	°C/W			
Maximum Junction-to-Ambient AD	Steady State	$R_{ heta JA}$	74	90	°C/W			
Maximum Junction-to-Lead	Steady State	$R_{ hetaJL}$	25	30	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS			-	-	
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-12			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-12V, V _{GS} =0V			-1	
		T _J =55°C			-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±8V			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=-250\mu A$	-0.35	-0.5	-0.85	V
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-60			Α
R _{DS(ON)}		V _{GS} =-4.5V, I _D =-9A		16.5	20	mΩ
		T _J =125°C		22	26	11122
	Static Drain-Source On-Resistance	V_{GS} =-2.5V, I_{D} =-8.5A		20	25	mΩ
		V_{GS} =-1.8V, I_{D} =-7.5A		24	31	mΩ
		V_{GS} =-1.5V, I_D =-7A		29	38	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-9A		45		S
V_{SD}	Diode Forward Voltage	I_S =-1A, V_{GS} =0V		-0.53	-1	V
Is	Maximum Body-Diode Continuous Curre			-2.5	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1740	2100	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-6V, f=1MHz		334		pF
C _{rss}	Reverse Transfer Capacitance			200		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.3	1.7	kΩ
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			19	23	nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-6V, I_D =-9A		4.5		nC
Q_{gd}	Gate Drain Charge			5.3		nC
$t_{D(on)}$	Turn-On DelayTime			240		ns
t _r	Turn-On Rise Time	V_{GS} =-4.5V, V_{DS} =-6V, R_L =0.67 Ω ,		580		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		7		μs
t _f	Turn-Off Fall Time]		4.2		μs
t _{rr}	Body Diode Reverse Recovery Time	I _F =-9A, dI/dt=100A/μs		22	27	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-9A, dI/dt=100A/μs		17		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leqslant 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating. Rev 1: June 2009

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

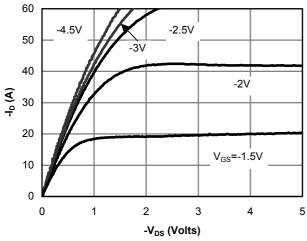


Figure 1: On-Region Characteristics(Note E)

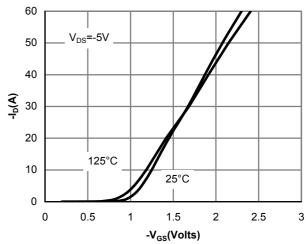


Figure 2: Transfer Characteristics(Note E)

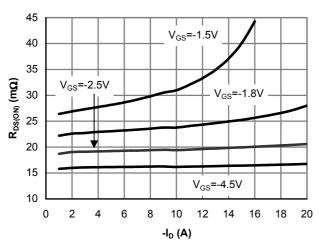


Figure 3: On-Resistance vs. Drain Current and Gate Voltage(Note E)

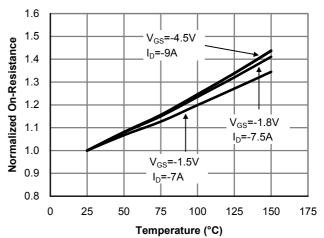


Figure 4: On-Resistance vs. Junction
Temperature(Note E)

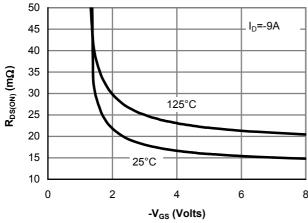


Figure 5: On-Resistance vs. Gate-Source Voltage(Note E)

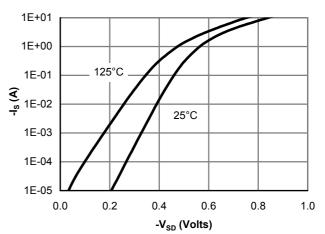


Figure 6: Body-Diode Characteristics(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

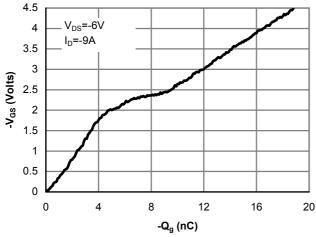


Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

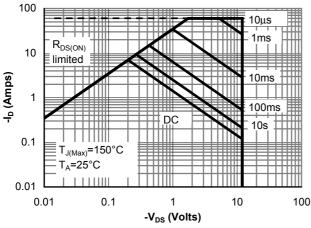
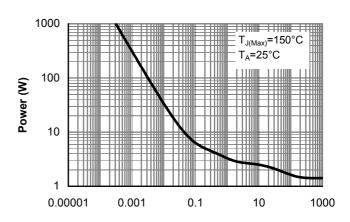



Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note F)

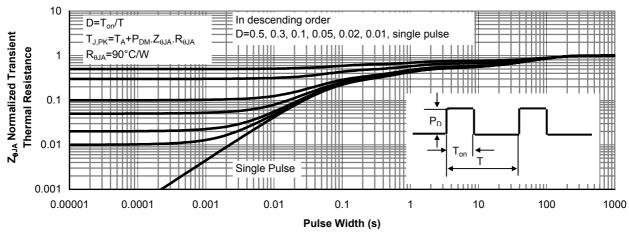
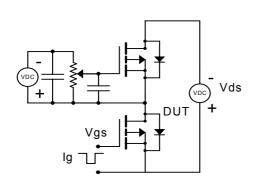
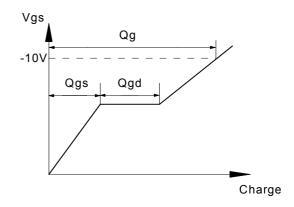
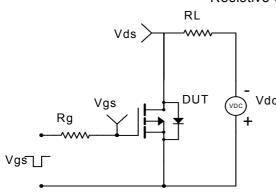
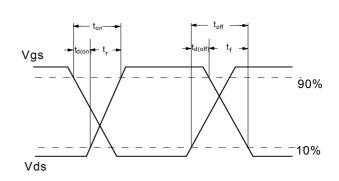
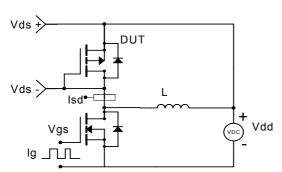
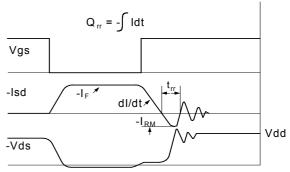




Figure 11: Normalized Maximum Transient Thermal Impedance(Note F)


Ć


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for alpha & omega manufacturer:

Other Similar products are found below:

AOT1608L AO4492 AOD478 AOD468 AOZ6135HI AO5404E AOD482 AO3402 AOTF10B60D AOU3N50 AOZ1235QI-01

AOK42S60L AON7534 AOD3N50 AO4468 AO3401A AO3415 AON2403 AOD4130 AOB290L AOTF42S60L AOTF190A60L

AO4404B AON6756 AO4813 AO3414 aot412 AO4818 AOT270AL AO6420 AO3442 AOT2918L AO4616 AO4294 AOZ1020AI

AON6250 AON6444 AOZ3011PI AO8820 AOT10N65 AOK20S60L AOK20N60L AON6548 AO3415A AOT470 AOZ8905CI

AOK60N30L AOT410L AON6280 AON6414A